教學(xué)目標(biāo)
1.使學(xué)生認(rèn)識(shí)字母表示數(shù)的意義,了解字母表示數(shù)是數(shù)學(xué)的一大進(jìn)步;
2.了解代數(shù)式的概念,使學(xué)生能說(shuō)出一個(gè)代數(shù)式所表示的數(shù)量關(guān)系;
3.通過(guò)對(duì)用字母表示數(shù)的講解,初步培養(yǎng)學(xué)生觀察和抽象思維的能力;
4.通過(guò)本節(jié)課的教學(xué),使學(xué)生深刻體會(huì)從特殊到一般的的數(shù)學(xué)思想方法。
教學(xué)建議
1. 知識(shí)結(jié)構(gòu):本小節(jié)先回顧了小學(xué)學(xué)過(guò)的字母表示的兩種實(shí)例,一是運(yùn)算律,二是公式,從中看出字母表示數(shù)的優(yōu)越性,進(jìn)而引出代數(shù)式的概念。
2.教學(xué)重點(diǎn)分析:教科書,介紹了小學(xué)用字母表示數(shù)的實(shí)例,一個(gè)是運(yùn)算律,一個(gè)是常用公式,上述兩種例子應(yīng)用廣泛,且能很好地體現(xiàn)用字母表示數(shù)所具有的簡(jiǎn)明、普遍的優(yōu)越性,用字母表示是數(shù)學(xué)從算術(shù)到代數(shù)的一大進(jìn)步,是代數(shù)的顯著特點(diǎn)。運(yùn)用算術(shù)的方法解決問(wèn)題,是小學(xué)學(xué)生的思維方法 ,現(xiàn)在,從具體的數(shù)過(guò)渡到用字母表示數(shù),滲透了抽象概括的思維方法,在認(rèn)識(shí)上是一個(gè)質(zhì)的飛躍。對(duì)代數(shù)式的概念課文沒(méi)有直接給出,而是用實(shí)例形象地說(shuō)明了代數(shù)式的概念。對(duì)代數(shù)式的概念可以從三個(gè)方面去理解:
。1)從具體的數(shù)到用字母表示數(shù),是抽象思維的開始,體現(xiàn)了特殊與一般的辨證關(guān)系,用字母表示數(shù)具有簡(jiǎn)明、普遍的優(yōu)越性.
。2)代數(shù)式中并不要求數(shù)和表示數(shù)的字母同時(shí)出現(xiàn),單獨(dú)的一個(gè)數(shù)和字母也是代數(shù)式.如:2,m都是代數(shù)式.
等都不是代數(shù)式.
3.教學(xué)難點(diǎn)分析:能正確說(shuō)出一個(gè)代數(shù)式的數(shù)量關(guān)系,即用語(yǔ)言表達(dá)代數(shù)式的意義,一定要理清代數(shù)式中含有的各種運(yùn)算及其順序。用語(yǔ)言表達(dá)代數(shù)式的意義,具體說(shuō)法沒(méi)有統(tǒng)一規(guī)定,以簡(jiǎn)明而不引起誤會(huì)為出發(fā)點(diǎn)。
如:說(shuō)出代數(shù)式7(a-3)的意義。
分析 7(a-3)讀成7乘a減3,這樣就產(chǎn)生歧義,究竟是7a-3呢?還是7(a-3)呢?有模棱兩可之感。代數(shù)式7(a-3)的最后運(yùn)算是積,應(yīng)把a(bǔ)-3作為一個(gè)整體。所以,7(a-3)的意義是7與(a-3)的積。
4.書寫代數(shù)式的注意事項(xiàng):
。1)代數(shù)式中數(shù)字與字母或者字母與字母相乘時(shí),通常把乘號(hào)簡(jiǎn)寫作“·”或省略不寫,同時(shí)要求數(shù)字應(yīng)寫在字母前面.
如3×a ,應(yīng)寫作3.a 或?qū)懽?a ,a×b 應(yīng)寫作3.a 或?qū)懽鱝b .帶分?jǐn)?shù)與字母相乘,應(yīng)把帶分?jǐn)?shù)化成假分?jǐn)?shù),
.?dāng)?shù)字與數(shù)字相乘一般仍用“×”號(hào).
。2)代數(shù)式中有除法運(yùn)算時(shí),一般按照分?jǐn)?shù)的寫法來(lái)寫.
(3)含有加減運(yùn)算的代數(shù)式需注明單位時(shí),一定要把整個(gè)式子括起來(lái).
5.對(duì)本節(jié)例題的分析:
例1是用代數(shù)式表示幾個(gè)比較簡(jiǎn)單的數(shù)量關(guān)系,這些小學(xué)都學(xué)過(guò).比較復(fù)雜一些的數(shù)量關(guān)系的代數(shù)式表示,課文安排在下一節(jié)中專門介紹.
例2是說(shuō)出一些比較簡(jiǎn)單的代數(shù)式的意義.因?yàn)榇鷶?shù)式中用字母表示數(shù),所以把字母也看成數(shù),一種特殊的數(shù),就可以像看待原來(lái)比較熟悉的數(shù)式一樣,說(shuō)出一個(gè)代數(shù)式所表示的數(shù)量關(guān)系,只是另外還要考慮乘號(hào)可能省略等新規(guī)定而已.
6.教法建議
。1)因?yàn)檫@一章知識(shí)大部分在小學(xué)學(xué)習(xí)過(guò),講授新課之前要先復(fù)習(xí)小學(xué)學(xué)過(guò)的運(yùn)算律,在學(xué)生原有的認(rèn)知結(jié)構(gòu)上,提出新的問(wèn)題。這樣即復(fù)習(xí)了舊知識(shí),又引出了新知識(shí),能激發(fā)學(xué)生的學(xué)習(xí)興趣。在教學(xué)中,一定要注意發(fā)揮本章承上啟下的作用,搞好小學(xué)數(shù)學(xué)與初中代數(shù)的銜接,使學(xué)生有一個(gè)良好的開端。
。2)在本節(jié)的學(xué)習(xí)過(guò)程中,要使學(xué)生理解代數(shù)式的概念,首先要給學(xué)生多舉例子(學(xué)生比較熟悉、貼近現(xiàn)實(shí)生活的例子),使學(xué)生從感性上認(rèn)識(shí)什么是代數(shù)式,理清代數(shù)式中的運(yùn)算和運(yùn)算順序,才能正確說(shuō)出一個(gè)代數(shù)式所表示的數(shù)量關(guān)系,從而認(rèn)識(shí)字母表示數(shù)的意義——普遍性、簡(jiǎn)明性,也為列代數(shù)式做準(zhǔn)備。
。3)條件比較好的學(xué)校,老師可選用一些多媒體課件,激發(fā)學(xué)生的學(xué)習(xí)興趣,增強(qiáng)學(xué)生自主學(xué)習(xí)的能力。
(4)老師在講解第一節(jié)之前,一定要對(duì)全章內(nèi)容和課時(shí)安排有一個(gè)了解,注意前后知識(shí)的銜接,只有這樣,我們老師才能教給學(xué)生系統(tǒng)的而不是一些零散的知識(shí),久而久之,學(xué)生頭腦中自然會(huì)形成一個(gè)完整的知識(shí)體系。
。5)因?yàn)槭切聦W(xué)期代數(shù)的第一節(jié)課,老師一定要給學(xué)生一個(gè)好印象,好的開端等于成功了一半。那么,怎么才能給學(xué)生留下好印象呢?首先,你要盡量在學(xué)生面前展示自己的才華。比如,英語(yǔ)口語(yǔ)好的老師,可以用英語(yǔ)做一個(gè)自我介紹,然后為學(xué)生說(shuō)一段祝福語(yǔ)。第二,上課時(shí)盡量使用多種語(yǔ)言與學(xué)生交流,其中包括情感語(yǔ)言(眉目語(yǔ)言、手勢(shì)語(yǔ)言等),讓學(xué)生感受到老師對(duì)他的關(guān)心。
7.教學(xué)重點(diǎn)、難點(diǎn):
重點(diǎn):用字母表示數(shù)的意義
難點(diǎn):學(xué)會(huì)用字母表示數(shù)及正確說(shuō)出一個(gè)代數(shù)式所表示的數(shù)量關(guān)系。
教學(xué)設(shè)計(jì)示例
代數(shù)式
教學(xué)目標(biāo)
1.使學(xué)生認(rèn)識(shí)字母表示數(shù)的意義,了解字母表示數(shù)是數(shù)學(xué)的一大進(jìn)步;
2.了解代數(shù)式的概念,使學(xué)生能說(shuō)出一個(gè)代數(shù)式所表示的數(shù)量關(guān)系;
3.通過(guò)對(duì)用字母表示數(shù)的講解,初步培養(yǎng)學(xué)生觀察和抽象思維的能力;
4.通過(guò)本節(jié)課的教學(xué),使學(xué)生深刻體會(huì)從特殊到一般的的數(shù)學(xué)思想方法.
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):用字母表示數(shù)的意義
難點(diǎn):學(xué)會(huì)用字母表示數(shù)及正確地說(shuō)出代數(shù)式所表示的數(shù)量關(guān)系
課堂教學(xué)過(guò)程設(shè)計(jì)
一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問(wèn)題
1在小學(xué)我們?cè)鴮W(xué)過(guò)幾種運(yùn)算律?都是什么?如可用字母表示它們?
(通過(guò)啟發(fā)、歸納最后師生共同得出用字母表示數(shù)的五種運(yùn)算律)
(1)加法交換律 a+b=b+a;
(2)乘法交換律 a·b=b·a;
(3)加法結(jié)合律 (a+b)+c=a+(b+c);
(4)乘法結(jié)合律 (ab)c=a(bc);
(5)乘法分配律 a(b+c)=ab+ac
指出:(1)“×”也可以寫成“·”號(hào)或者省略不寫,但數(shù)與數(shù)之間相乘,一般仍用“×”;
(2)上面各種運(yùn)算律中,所用到的字母a,b,c都是表示數(shù)的字母,它代表我們過(guò)去學(xué)過(guò)的一切數(shù)